【长期加分贴】介绍和点评你上过的公开课

258314530
现在网上的公开课资源很多了,但是相同或者类似的课程很多,让人很难抉择。还有很多好的资源没有被发现。
欢迎跟过公开课(不一定要全部跟完)的同学贡献信息,介绍你上过的公开课,给后来想跟课的同学一个参考,加分多多哦~~
要求包括以下内容:
1. 课程的基本信息:课程平台,开课学校,课程全名,开课时间,课程链接。
2. 课程难度,作业量,每周花在这门课的时间,以及你的基础(是初学者?还是本来就是你的专业内容?)
3. 各种感想、收获、课程内容介绍、你对这门课的评价等等~~这个就自己发挥啦(请具体!)
4. 如果让你重新学过这门课,你会在学习方法上,背景提升上会有什么样的改进(选答)
5. 这门课和其他你跟过的课,用过的资源或者是学校上过的课有什么区别?(选答,如果你还跟过其他类似的课的话)
6. 给以后打算学这门课的同学一些建议(请具体!可包括任何方面)
课程平台不限,Coursera, Udacity, edX, Stanford Online(openEdX), Stanford SEE, MIT OCW, UCB webcast, udemy, code school, codecademy, MongoDB University, NovoEd, Khan Academy等等都行,只要你跟过,不一定全部跟完,分享资讯都可以获得加分!
请大家直接回复到下面,版主会过来加分~
评论列表 (更新至220L)
欢迎跟过公开课(不一定要全部跟完)的同学贡献信息,介绍你上过的公开课,给后来想跟课的同学一个参考,加分多多哦~~
要求包括以下内容:
1. 课程的基本信息:课程平台,开课学校,课程全名,开课时间,课程链接。
2. 课程难度,作业量,每周花在这门课的时间,以及你的基础(是初学者?还是本来就是你的专业内容?)
3. 各种感想、收获、课程内容介绍、你对这门课的评价等等~~这个就自己发挥啦(请具体!)
4. 如果让你重新学过这门课,你会在学习方法上,背景提升上会有什么样的改进(选答)
5. 这门课和其他你跟过的课,用过的资源或者是学校上过的课有什么区别?(选答,如果你还跟过其他类似的课的话)
6. 给以后打算学这门课的同学一些建议(请具体!可包括任何方面)
课程平台不限,Coursera, Udacity, edX, Stanford Online(openEdX), Stanford SEE, MIT OCW, UCB webcast, udemy, code school, codecademy, MongoDB University, NovoEd, Khan Academy等等都行,只要你跟过,不一定全部跟完,分享资讯都可以获得加分!
请大家直接回复到下面,版主会过来加分~
评论列表 (更新至220L)
- Data Structures @Berkeley
- Introduction to Computer Science and Programming: Using Python @MIT
- Algorithms @Princeton
- Algorithms: Design and Analysis @Stanford
- Data Structures and Algorithm Design @Tsinghua
- Developing iOS 7 Apps for iPhone and iPad @Stanford
- Python @Codecademy
- Full Stack Web Development Specialization Capstone Project @HKUST
- Algorithms @Princeton
- Probabilistic Graphical Model @Stanford
- Control of Mobile Robots @GeorgiaTech
- Data Analysis @JHU
- Learn to Program @UToronto
- Introduction to Finance @UMich
- Computing for Data Analysis @JHU
- Positive Psychology @Harvard
- Applications in Engineering Mechanics @GeorgiaTech
- Learn to Program @UToronto
- Computer Networks @UW-Seattle
- An Introduction to Interactive Programming in Python @Rice
- Linear Algebra @MIT
- Machine Learning @Stanford
- Computational Neuroscience @UW-Seattle
- Listening to Music @Yale
- Introduction to Algorithms @MIT
- Linear Algebra @MIT
- Human Behavioral Biology @Stanford
- Probabilistic Graphical Models @Stanford
- Intro to Computer Science @Udacity
- Intro to Artificial Intelligence @Udacity
- Intro to Data Science @Udacity
- Programming Methodology @Stanford
- Neural Networks for Machine Learning @UToronto
- Financial Engineering and Risk Management @Columbia
- Fundamentals of Clinical Trials @Harvard
- Programming Languages @UW-Seattle
- Programming Languages @UW-Seattle
- Introduction to Computer Network @Stanford
- Developing iOS 7 Apps for iPhone and iPad @Stanford
- Image and Video Processing: From Mars to Hollywood with a stop at the hospital @Duke
- 程序设计实习 @PKU
- Introduction to Statistic Learning @Stanford
- Financial Markets @Yale
- Game Theory @Yale
- Introduction to Psychology @Yale
- Natural Language Processing @Columbia
- Gamification @UPenn
- Machine Learning @Stanford
- Asset Pricing @UChicago
- Data Analysis and Statistical Inference @Duke
- Intro to Java Programming @SJSU
- Algorithms @Princeton
- Networks, Crowds, and Markets @Cornell
- Machine Learning @Stanford
- Design: Creation of Artifacts in Society @UPenn
- Think Again: How to Reason and Argue @Duke/UNC
- R Programming @JHU
- 欧洲简史,美国简史 @Khan Academy
- Computing for Data Analysis @JHU
- Machine Learning @Stanford
- Intro to Computer Science @Udacity
- Financial Markets @Yale
- Machine Learning @Stanford
- Linear and Integer Programming @Colorado
- Programming for Everybody (Python) @UMich
- Introduction to Power Electronics @Colorado
- Probabilistic Graphical Models @Stanford
- The Fourier Transform and Its Applications @Stanford
- Machine Learning @Stanford
- Human Computer Interaction @UCSD
- Positive Psychology @Harvard
- Cryptography @Stanford
- Data Analysis and Statistical Inference @Duke
- Programming for Everybody (Python) @UMich
- Machine Learning @Stanford
- Algorithms Design and Analysis @Stanford
- 中国古代历史与人物——秦始皇 @NTU
- Algorithm: Design and Analysis @Stanford
- Internet History, Technology, and Security @UMich
- R Programming @JHU
- Introduction to Computer Science @Harvard
- Data Analysis and Statistical Inference @Duke
- Algorithmic Thinking @Rice
- 计算机网络概论 @台湾清华大学
- An Introduction to Interactive Programming in Python @Rice
- Principles of Computing @Rice
- Algorithmic Thinking @Rice
- Introduction to Power Electronics @Colorado
- 数据结构 @ZJU
- Software Security @UMD
- Introduction to Algorithm @MIT
- 中国古代历史与人物——秦始皇 @NTU
- PaulProgramming @YouTube
- 机器学习技法 @NTU
- Algorithms: Design and Analysis @Stanford
- Introduction to Computer Science @Harvard
- Principles of Computing @Rice
- Game Theory @Stanford
- Intro do Computer Science @Udacity
- Intro to Relational Database @Udacity
- Programming Methodology @Stanford
- Introduction to Computer Science and Programming: Using Python @MIT
- Linear Algebra @MIT
- Data Structures @Tsinghua
- Statistical Mechanics: Algorithms and Computations @巴黎高师
- Algorithms @Princeton
- Machine Learning @Stanford
- Programming Languages @UW-Seattle
- Algorithms: Design and Analysis @Stanford
- Convolutional Neural Networks for Visual Recognition @Stanford
- Medical Image Analysis @SJTU
- Design and Analysis of Algorithms @MIT
- Programming for Everybody (Getting Started with Python) @UMich
- R Programming @JHU
- Introduction to Programming with Matlab @Vanderbilt
- Programming Mobile Applications for Android Handheld Systems @UMD
- R programming @JHU
- 機器學習技法 @NTU
- Financial Markets @Yale
- Introduction to Algorithms @MIT
- Object Oriented Programming in Java @UCSD
- Full Stack Web Development @HKUST
- An Introduction to Interactive Programming in Python @Rice
- An Introduction to Interactive Programming in Python @Rice
- The Analytics Edge @MIT
- Full Stack Web Development @HKUST
- Machine Learning @Stanford
- Convex Optimization @CMU
- Intro to Programming @Udacity
- Programming Methodology @Stanford
- Machine Learning @Stanford
- Introduction to Computer Network @Stanford
- Machine Learning @Stanford
- Model Thinking @UMich
- Deep learning @Udacity
- Intro to Parallel Programming @Udacity
- Algorithms @Princeton
- Data Structures and Algorithm Design @Tsinghua
- Machine Learning @Stanford
- Build Web Apps with React JS and Flux @Udemy
- Introduction of Forensic Science @NTU Singapore
- Algorithms: Design and Analysis @Stanford
- Machine Learning @Stanford
- Introduction to Computer Systems @CMU
- Programming Abstractions @Stanford
- Functional Program Design in Scala @EPFL
- Linear and Integer Programming @Colorado
- An Introduction to Interactive Programming in Python @Rice
- Algorithms @Princeton
- Data Manipulation at Scale: Systems and Algorithms @UW-Seattle
- The Complete Web Developer Course - Build 14 Websites @Udemy
- Data Analyst Nanodegree @Udacity
- Introduction to Programming with MATLAB @Vandebilt
- The R Programming Environment @JHU
- Machine Learning for Trading @GeorgiaTech
- 用Python做数据分析 @NJU
- Positive Psychology @Harvard
- Google's Python Class @Google
- Machine Learning @Stanford
- Introduction to Functional Programming @TU Delft
- Python for Everybody @UMich
- The Web Developer Bootcamp @Udemy
- The Python Mega Course @Udemy
- Introduction to Negotiation @Yale
- Open Security Training @CMU